A divisive spectral method for network community detection
نویسندگان
چکیده
Abstract. Community detection is a fundamental problem in the domain of complexnetwork analysis. It has received great attention, and many community detection methods have been proposed in the last decade. In this paper, we propose a divisive spectral method for identifying community structures from networks, which utilizes a sparsification operation to pre-process the networks first, and then uses a repeated bisection spectral algorithm to partition the networks into communities. The sparsification operation makes the community boundaries more clearer and more sharper, so that the repeated spectral bisection algorithm extract high-quality community structures accurately from the sparsified networks. Experiments show that the combination of network sparsification and spectral bisection algorithm is highly successful, the proposed method is more effective in detecting community structures from networks than the others.
منابع مشابه
An efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network
Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...
متن کاملA Local Method for Detecting Communities
We propose a novel method of community detection that is computationally inexpensive and possesses physical significance to a member of a social network. This method is unlike many divisive and agglomerative techniques and is local in the sense that a community can be detected within a network without requiring knowledge of the entire network. A global application of this method is also introdu...
متن کاملLocal method for detecting communities.
We propose a method of community detection that is computationally inexpensive and possesses physical significance to a member of a social network. This method is unlike many divisive and agglomerative techniques and is local in the sense that a community can be detected within a network without requiring knowledge of the entire network. A global application of this method is also introduced. S...
متن کاملUtilizes the Community Detection for Increase Trust using Multiplex Networks
Today, e-commerce has occupied a large volume of economic exchanges. It is known as one of the most effective business practices. Predicted trust which means trusting an anonymous user is important in online communities. In this paper, the trust was predicted by combining two methods of multiplex network and community detection. In modeling the network in terms of a multiplex network, the relat...
متن کاملA Model Based Metaheuristic for Hybrid Hierarchical Community Structure in Social Networks
In recent years, the study of community detection in social networks has received great attention. The hierarchical structure of the network leads to the emergence of the convergence to a locally optimal community structure. In this paper, we aim to avoid this local optimum in the introduced hybrid hierarchical method. To achieve this purpose, we present an objective function where we incorpora...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1506.08354 شماره
صفحات -
تاریخ انتشار 2015